Tangentenprobleme

Aus Friedrich-Schiller-Gymnasium
Wechseln zu: Navigation, Suche


Tangente - Definition und Tangentengleichung


Definition


Gegeben ist ein Punkt P(x_P|f(x_P)) auf dem Schaubild einer differenzierbaren Funktion f. Die Tangente des Schaubildes im Punkt P ist genau diejenige Gerade durch P mit f'(x_P) als Steigung.



Allgemeine Tangentengleichungen:

y=f'(x_0) \cdot (x-x_0)+f(x_0)

P(x|y) ist ein Punkt der Tangente.

P(x_0|y_0) ist ein Berührpunkt der Tangente mit dem Schaubild der Funktion von F.

Hand.gif   Übung

Gegeben ist eine Funktion f mit f(x)=-\frac{x^2}{4} \cdot (x-6) und ein Punkt P(6;0), der nicht zu f gehört.
Finde die Tangente von P an f, ohne den Berührpunkt zu kennen.


allgemeine Tangentengleichung:
y=f'(x_0) \cdot (x-x_0)+f(x_0)
P(x|y), P(6|0) ---> Punkte der Tangente
P_0(x_0|y_0) ---> unbekannter Berührpunkt der Tangente
0=\frac{-2x}{4} \cdot (x-6)-\frac{x_0^2}{4} \cdot 1 \cdot (6-x_0)+\left( -\frac{x_0^2}{4} \cdot (x_0-6) \right)
Gleichung in GTR eingeben:
Berührpunkte:
x_1=0
x_2=6
Einsetzt x_1=0 in die allgemeine Tangentengleichung:
---> y=(-\frac{2 \cdot 0}{4} \cdot (0-6)-\frac{0^2}{4} \cdot 1 \cdot (x-0)+0)
Tangentengleichung: y=0 \cdot x+0
Das Ergebnis für x=6: y=0 /> Einsetzt x_2=6 in die allgemeine Tangentengleichung:
---> y=(-\frac{2 \cdot 6}{4} \cdot (6-6)-\frac{6^2}{4} \cdot 1 \cdot (x-6)+0)
Tangentengleichung: y=0 \cdot x+0

Tangente an Schaubild, Berührpunkt ist bekannt

30px   Aufgabe

Bestimme die Gleichung der Tangente, die am Schaubild der Funktion f(x)={1 \over 9} x^3 -x an der Stelle x_0=3 angelegt werden kann.

Tangente an Schaubild, Steigung ist bekannt

30px   Aufgabe

Gegeben ist die Funktion f mit f(x)=2x^2-18x+9. Gib die Gleichungen aller Tangenten mit der Steigung -2 an, die an das Schaubild von f gelegt werden können.

Tangente an Schaubild, Berührpunkt unbekannt

30px   Aufgabe

Vom Punkt P(0|5) aus werden Tangenten an das Schaubild von f(x)={1 \over 8}x^3 - {3 \over 4}x^2 +4 gelegt. Bestimme die Gleichungen dieser Tangenten und die Koordinaten der Berührpunkte.