Rotationskörper
Rotationskörper
Rotationskörper werden Körper genannt, welche durch Rotation einer erzeugenden Kurve um eine Achse entstehen.
Die Achse um welche rotiert wird, bezeichnet man als Rotations- bzw. Figurenachse. Die von der Kurve eingeschlossene Fläche heißt Rotationsfläche.
Die Rotationsachse und die erzeugende Kurve müssen in der gleichen Ebene liegen.
Wozu braucht man Rotationskörper
Mit Hilfe von Rotationskörpern kann man das Volumen eines #runden# Körpers bestimmen, beispielsweise von einem Glas.
Herleitung des Volumens von Rotationskörpern um die x-Achse
Ein Rotationskörper entsteht aus der Rotation einer Rotationsfläche um eine Rotationsachse. Die Rotationsfläche entspricht hierbei der Fläche unter dem Graphen der erzeugenden Funktion im Intervall . Ähnlich wie auch bei der Herleitung der Fläche unter Kurven (Integrale) nähern wir diese Fläche mit Rechtecken der Breite an. Der Grenzwert dieser Fläche für immer schmalere Rechtecke, d.h. h→0 entspricht dem Integral .
Bei Rotaionskörpern wird ähnlich vorgegangen. Statt Rechtecken mit Breite verwendet man Zylinder mit Höhe .
Für das Volumen eines Zylinders gilt: . Der Radius entspricht hierbei dem Funktionswert an der entsprechende Stelle. Damit gilt für das Volumen der Kreisscheibe an der Stelle : .
Auch hier erhält man für den Grenzfall h→0 den exakten Wert, in diesem Fall für das Volumen. Für dieses gilt: .