Die Stammfunktion

Aus Friedrich-Schiller-Gymnasium
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Definition der Stammfunktion

Die Funktion F(x) der Ausgangsfunktion f(x) heißt Stammfunktion. F(x) ist die differenzierbare Funktion der reellen Funktion f(x) im Intervall \left[a;b\right], sodass gilt:
F'(x)=f(x)
Jede Funktion f(x) hat unendlich viele Stammfunktionen.
Auf die Stammfunktion kommt man, indem man die Ausgangsfunktion integriert, also:
F(x)=\int_{a}^{b} f (x)\,dx


Stammfunktionen zu einfachen Funktionen

f(x) F(x)
0 c
1 x+c
x {1 \over2}x^2+c
x^2 {1 \over3}x^3+c
\sqrt{x} =x^{1 \over2} {2 \over3}x^{3 \over2}+c
\sin (x) -\cos (x)+c
\cos (x) \sin (x)+c


Integrationsregeln zum Berechnen der Stammfunktion

Um an die Stammfunktion zu kommen muss man die Funktion f(x) integrieren. Dabei muss man bestimmte Regeln beachten von denen die meisten den bereits bekannten Ableitungsregeln sehr ähnlich sind.


Potenzregel

Möchte man eine Potenzfunktion wie zum Beispiel f(x)=x^2 integrieren um an die Stammfunktion zu kommen, so gilt:
F(x)=\int_{a}^{b} x^n\,dx ={1 \over{n+1}}x^{n+1}+c

Beispiel: f(x)=x^2

F(x)=\int_{a}^{b} x^2\,dx ={1 \over{2+1}}x^{2+1}+C={1 \over3}x^3+c


Summenregel

Möchte man eine Summe von zwei Funktionen integrieren so gilt die selbe Regel, wie beim Ableiten:
Summenregel beim Ableiten:
f(x)=u(x)+v(x)
f'(x)=u'(x) + v'(x)
Genau wie beim Ableiten werden beim Integrieren die Summanden einzeln integriert und dann stehen gelassen oder vereinfacht.
f(x)=u(x)+v(x)

F(x)=\int_{a}^{b} u (x)\,dx +\int_{a}^{b} v (x)\,dx