Lineares Wachstum: Unterschied zwischen den Versionen

Aus Friedrich-Schiller-Gymnasium
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
Das lineare Wachstum zeichnet sich dadurch aus, dass es immer dieselbe Änderungsrate, beziehungsweise Steigung, hat. Das heißt in einem bestimmten Zeitraum wird immer dieselbe Menge hinzugefügt oder abgezogen. Dabei sind zwei Eigenschaften veränderbar, und zwar die Änderungsrate <math>{m}</math> und der y-Achsenabschnitt <math>{b}</math>. Daraus folgt die allgemeine Formel:<br /><br />
+
Beim linearen Wachstum ist die Änderungsrate konstant. <br /><br />
 +
Bei der Funktion eines linearen Wachstums sind zwei Eigenschaften veränderbar, und zwar die Änderungsrate <math>{m}</math> und der y-Achsenabschnitt <math>{b}</math>. <br />
 +
Die Änderungsrate <math>{m}</math> gibt an, wie stark der Bestand pro Schritt auf der x-Achse zunimmt.<br />
 +
Der y-Achsenabschnitt <math>{b}</math> gibt an, wo der Graph der Funktion die y-Achse schneidet. <br />
 +
 
 +
 
 +
Die allgemeine Form lautet:<br />
  
 
<!-- Hinweis: Ein Wachstum hat keine Steigung. Wie beziehen sich die Größen m und b auf Größen beim Wachstum? -->
 
<!-- Hinweis: Ein Wachstum hat keine Steigung. Wie beziehen sich die Größen m und b auf Größen beim Wachstum? -->
  
<math>{f(x)=mx+b}</math><br /><br (>
+
<math>{f(x)={\color{Blue}m}x+{\color{OliveGreen}b}}</math><br /><br (>
[[Datei:Grafik 1.jpg|rahmenlos|rechts]] Beispiel:
+
 
 +
[[Datei:Grafik 1.jpg|rahmenlos|rechts]] Beispiel:<br />
 +
Ein kleines Kind hat in seinem Sparschwein 2€. Jeden Tag würft er weitere 50 ct in das Sparschwein. Die Geldmenge an jedem Tag nach Beobachtungsbeginn kann durch folgende Wachsttumsgleichung beschrieben werden (x in Tagen).<br />
 
<math>{m=\frac{1}{2}}</math><br />
 
<math>{m=\frac{1}{2}}</math><br />
 
<math>{b=2}</math><br />
 
<math>{b=2}</math><br />
Zeile 22: Zeile 30:
 
</popup>
 
</popup>
  
<popup name="Lösung2 )">
+
<popup name="Lösung 2)">
 
<math>{f(x)=-80 \cdot 5+1000}</math><br />
 
<math>{f(x)=-80 \cdot 5+1000}</math><br />
 
<math>{f(x)=600}</math><br />
 
<math>{f(x)=600}</math><br />

Version vom 24. November 2018, 19:31 Uhr

Beim linearen Wachstum ist die Änderungsrate konstant.

Bei der Funktion eines linearen Wachstums sind zwei Eigenschaften veränderbar, und zwar die Änderungsrate {m} und der y-Achsenabschnitt {b}.
Die Änderungsrate {m} gibt an, wie stark der Bestand pro Schritt auf der x-Achse zunimmt.
Der y-Achsenabschnitt {b} gibt an, wo der Graph der Funktion die y-Achse schneidet.


Die allgemeine Form lautet:


{f(x)={\color{Blue}m}x+{\color{OliveGreen}b}}

Grafik 1.jpg
Beispiel:

Ein kleines Kind hat in seinem Sparschwein 2€. Jeden Tag würft er weitere 50 ct in das Sparschwein. Die Geldmenge an jedem Tag nach Beobachtungsbeginn kann durch folgende Wachsttumsgleichung beschrieben werden (x in Tagen).
{m=\frac{1}{2}}
{b=2}
{f(x)=\frac{1}{2}x+2}


30px   Aufgabe

In einer Flasche befindet sich 1 l Wasser. Die Flasche hat ein Loch, durch das gleichmäßig 80 ml pro Minute auslaufen.
1) Stellen Sie dazu eine Funktionsgleichung auf!
2) Wieviel Wasser befindet sich nach 5 Minuten noch in der Flasche?
3) Wann ist die Flasche leer?